Network transfer entropy and metric space for causality inference.

نویسندگان

  • Christopher R S Banerji
  • Simone Severini
  • Andrew E Teschendorff
چکیده

A measure is derived to quantify directed information transfer between pairs of vertices in a weighted network, over paths of a specified maximal length. Our approach employs a general, probabilistic model of network traffic, from which the informational distance between dynamics on two weighted networks can be naturally expressed as a Jensen Shannon divergence. Our network transfer entropy measure is shown to be able to distinguish and quantify causal relationships between network elements, in applications to simple synthetic networks and a biological signaling network. We conclude with a theoretical extension of our framework, in which the square root of the Jensen Shannon Divergence induces a metric on the space of dynamics on weighted networks. We prove a convergence criterion, demonstrating that a form of convergence in the structure of weighted networks in a family of matrix metric spaces implies convergence of their dynamics with respect to the square root Jensen Shannon divergence metric.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Causal Network Inference by Optimal Causation Entropy

The broad abundance of time series data, which is in sharp contrast to limited knowledge of the underlying network dynamic processes that produce such observations, calls for an general and efficient method of causal network inference. Here we develop mathematical theory of Causation Entropy, a model-free information-theoretic statistic designed for causality inference. We prove that for a give...

متن کامل

Causation entropy identifies indirect influences, dominance of neighbors and anticipatory couplings

Inference of causality is central in nonlinear time series analysis and science in general. A popular approach to infer causality between two processes is to measure the information flow between them in terms of transfer entropy. Using dynamics of coupled oscillator networks, we show that although transfer entropy can successfully detect information flow in two processes, it often results in er...

متن کامل

Open or Closed? Information Flow Decided by Transfer Operators and Forecastability Quality Metric

A basic systems question concerns the concept of closure, meaning autonomomy (closed) in the sense of describing the (sub)system as fully consistent within itself. Alternatively, the system may be nonautonomous (open) meaning it receives influence from an outside coupling subsystem. Information flow, and related causation inference, are tenant on this simple concept. We take the perspective of ...

متن کامل

Entropy Transfer of Quantum Gravity Information Processing

Submitted for the DAMOP15 Meeting of The American Physical Society Entropy Transfer of Quantum Gravity Information Processing1 LASZLO GYONGYOSI, Budapest University of Technology and Economics, Hungarian Academy of Sciences, SANDOR IMRE, Budapest University of Technology and Economics — We introduce the term smooth entanglement entropy transfer, a phenomenon that is a consequence of the causali...

متن کامل

Assessment of Anesthesia Depth Using Effective Brain Connectivity Based on Transfer Entropy on EEG Signal

Introduction: Ensuring an adequate Depth of Anesthesia (DOA) during surgery is essential for anesthesiologists. Since the effect of anesthetic drugs is on the central nervous system, brain signals such as Electroencephalogram (EEG) can be used for DOA estimation. Anesthesia can interfere among brain regions, so the relationship among different areas can be a key factor in the anesthetic process...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 87 5  شماره 

صفحات  -

تاریخ انتشار 2013